кусочно-квадратичный - definitie. Wat is кусочно-квадратичный
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is кусочно-квадратичный - definitie

Невычет; Квадратичный невычет

Невычет         

степени n по модулю m - число а, для которого Сравнение xna (mod m) не имеет решения; см. Вычет.

Квадратичный вычет         

понятие теории чисел. К. в. по модулю m - число а, для которого Сравнение x2а (mod m) имеет решение: при некотором целом х число x2-a делится на m; если это сравнение не имеет решений, то а называют квадратичным невычетом. Например, если m = 11, то число 3 будет К. в., так как сравнение x2 ≡ 3 (mod 11) имеет решения х = 5, х = 6, а число 2 будет невычетом, т.к. не существует чисел х, удовлетворяющих сравнению x2 ≡ 2 (mod 11). К. в. являются частным случаем Вычетов степени n для n = 2. Если m равно простому нечётному числу р, то среди чисел 1, 2,..., р-1 имеется (р-1)/2 К. в. и (р-1)/2 квадратичных невычетов. Для изучения К. в. по простому модулю р вводится Лежандра символ , определяемый так: если а взаимно просто с р, то полагают = 1, когда а - К. в., и = - 1, когда а - квадратичный невычет. Основной теоремой в этом круге вопросов является так называемый закон взаимности К. в.: если р и q - простые нечётные числа, то

.

Эту закономерность открыл около 1772 Л. Эйлер, современная формулировка дана А. Лежандром, полное доказательство впервые дал в 1801 К. Гаусс. Удобным обобщением символа Лежандра является Якоби символ. Закон взаимности К. в. получил многочисленные обобщения в теории алгебраических чисел. И. М. Виноградовыми др. учёными изучалось распределение К. в. и суммы значений символа Лежандра.

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972.

НЕВЫЧЕТ         
в теории чисел , см. Вычет, Степенной вычет.

Wikipedia

Квадратичный вычет

Целое число a {\displaystyle a} называется квадратичным вычетом по модулю m {\displaystyle m} , если разрешимо сравнение:

x 2 a ( mod m ) . {\displaystyle x^{2}\equiv a{\pmod {m}}.}

Если указанное сравнение не разрешимо, то число a {\displaystyle a} называется квадратичным невычетом по модулю m {\displaystyle m} . Решение приведенного выше сравнения означает извлечение квадратного корня в кольце классов вычетов.

Квадратичные вычеты широко применяются в теории чисел, они также нашли практические применения в акустике, криптографии, теории графов (см. Граф Пэли) и в других областях деятельности.

Понятие квадратичного вычета может также рассматриваться для произвольного кольца или поля. Например, квадратичные вычеты в конечных полях.

Wat is Нев<font color="red">ы</font>чет - definition